The TWIML AI Podcast with Sam Charrington

Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.
  • Today, we're joined by Chip Huyen, independent researcher and writer to discuss her new book, “AI Engineering.” We dig into the definition of AI engineering, its key differences from traditional machine learning engineering, the common pitfalls encountered in engineering AI systems, and strategies to overcome them. We also explore how Chip defines AI agents, their current limitations and capabilities, and the critical role of effective planning and tool utilization in these systems. Additionally, Chip shares insights on the importance of evaluation in AI systems, highlighting the need for systematic processes, human oversight, and rigorous metrics and benchmarks. Finally, we touch on the impact of open-source models, the potential of synthetic data, and Chip’s predictions for the year ahead. The complete show notes for this episode can be found at https://twimlai.com/go/715.
  • Today, we're joined by Abhijit Bose, head of enterprise AI and ML platforms at Capital One to discuss the evolution of the company’s approach and insights on Generative AI and platform best practices. In this episode, we dig into the company’s platform-centric approach to AI, and how they’ve been evolving their existing MLOps and data platforms to support the new challenges and opportunities presented by generative AI workloads and AI agents. We explore their use of cloud-based infrastructure—in this case on AWS—to provide a foundation upon which they then layer open-source and proprietary services and tools. We cover their use of Llama 3 and open-weight models, their approach to fine-tuning, their observability tooling for Gen AI applications, their use of inference optimization techniques like quantization, and more. Finally, Abhijit shares the future of agentic workflows in the enterprise, the application of OpenAI o1-style reasoning in models, and the new roles and skillsets required in the evolving GenAI landscape. The complete show notes for this episode can be found at https://twimlai.com/go/714.
  • Today, we're joined by Dan Jeffries, founder and CEO of Kentauros AI to discuss the challenges currently faced by those developing advanced AI agents. We dig into how Dan defines agents and distinguishes them from other similar uses of LLM, explore various use cases for them, and dig into ways to create smarter agentic systems. Dan shared his “big brain, little brain, tool brain” approach to tackling real-world challenges in agents, the trade-offs in leveraging general-purpose vs. task-specific models, and his take on LLM reasoning. We also cover the way he thinks about model selection for agents, along with the need for new tools and platforms for deploying them. Finally, Dan emphasizes the importance of open source in advancing AI, shares the new products they’re working on, and explores the future directions in the agentic era. The complete show notes for this episode can be found at https://twimlai.com/go/713.
  • Today, we're joined by Byron Cook, VP and distinguished scientist in the Automated Reasoning Group at AWS to dig into the underlying technology behind the newly announced Automated Reasoning Checks feature of Amazon Bedrock Guardrails. Automated Reasoning Checks uses mathematical proofs to help LLM users safeguard against hallucinations. We explore recent advancements in the field of automated reasoning, as well as some of the ways it is applied broadly, as well as across AWS, where it is used to enhance security, cryptography, virtualization, and more. We discuss how the new feature helps users to generate, refine, validate, and formalize policies, and how those policies can be deployed alongside LLM applications to ensure the accuracy of generated text. Finally, Byron also shares the benchmarks they’ve applied, the use of techniques like ‘constrained coding’ and ‘backtracking,’ and the future co-evolution of automated reasoning and generative AI. The complete show notes for this episode can be found at https://twimlai.com/go/712.
  • Today, we're joined by Arash Behboodi, director of engineering at Qualcomm AI Research to discuss the papers and workshops Qualcomm will be presenting at this year’s NeurIPS conference. We dig into the challenges and opportunities presented by differentiable simulation in wireless systems, the sciences, and beyond. We also explore recent work that ties conformal prediction to information theory, yielding a novel approach to incorporating uncertainty quantification directly into machine learning models. Finally, we review several papers enabling the efficient use of LoRA (Low-Rank Adaptation) on mobile devices (Hollowed Net, ShiRA, FouRA). Arash also previews the demos Qualcomm will be hosting at NeurIPS, including new video editing diffusion and 3D content generation models running on-device, Qualcomm's AI Hub, and more! The complete show notes for this episode can be found at https://twimlai.com/go/711.